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Study of the Binding of cis- and 
frans-Dichlorodiammineplatinum(II) to Calf Thymus 
DNA by Extended X-Ray Absorption 
Fine Structure Spectroscopy 

Sir: 

The complex m-dichlorodiammineplatinum(II) (DDP) is 
an active antitumor drug while the trans-DDP isomer is inef­
fective, a result that may reflect differences in their ability to 
bind DNA.1-5 While various chemical and physical techniques 
have been used to explore the interactions of these platinum 
compounds with DNA, there appears to be no direct structural 
information about the resulting platinum-DNA complex. 
Recent crystallographic study50 of the blue compound formed 
between m-diammineplatinum and a-pyridone (1) suggest­
ed513 that thymine (2, R = CH3) and guanine (3) bases in DNA 

H2N 

might bridge two cw-diammineplatinum units using the de-
protonated amide nitrogen and the exocyclic oxygen as donor 
atoms. The resulting complex would have a short Pt-Pt dis­
tance, 2.5-3.2 A, depending upon the platinum oxidation state. 
To test this possibility and to provide information about the 
binding sites of DDP, samples of cis- and trans- [Pt(NHa) 2CI2] 
bound to calf thymus DNA, 4 and 5, respectively, were pre­
pared and studied by extended x-ray absorption fine structure 
(EXAFS) spectroscopy. 

The platinum-DNA samples were prepared in the following 
manner. Solid DDP complexes were suspended in buffered 
solutions (10 mM NaNO3, 5 mM THs-NO3, pH 8) of calf 
thymus DNA and left to stir in the dark at room temperature 
for 5 days. The formal ratio (rf) of c/s-DDP (concentration 5.1 
mMin 15 mL) to that of DNA phosphate (5.3 mM) was 0.96, 
a value also used for the trans-DDP (5.3 mM in 75 mL) with 
DNA (5.5 mM) binding experiment. Following the incubation, 
the opalescent solutions were centrifuged at 190 000 X g for 
16-18 h, pelleting the platinum-DNA complex.6 The pellets 
were diluted with sucrose and a small amount of buffer to 
perform the measurements. 

The raw data (Pt Li edge)7a in the form of \ix = In IQ/I vs. 
E (where nx is the absorption factor, /0 and / are the incident 
and transmitted light intensities, and E is the x-ray photon 
energy) of 4 and 5 were recorded at ambient (cf. Figures la 
and lb) and liquid nitrogen (cf. Figure Ic) temperatures with 
the synchrotron radiation of EXAFS I at SLAC-SSRL.7b 

After conversion of E into photoelectron wavevector k (where 
k = [2m/h2{E - £ 0 ) ] 1 / 2 and E0 is chosen as 13 900 eV and 
varied in the subsequent curve fittings) and /xx into x(k) = (i" 
— /uo) /MO,8 the data were multiplied by k3 and the background 
was removed by a cubic spline technique (four sections with 
~4 A - 1 each).8 Fourier transforms of these data provide the 
radial distribution (RD) functions shown in Figure 1. To obtain 
interatomic distances from these Fourier transform functions, 
phase shift corrections must be acquired from other known 
systems and applied to the peak positions.9 Knowing the av­
erage Pt-N distance of 2.043 A in [Pt(en)2]2+ (en = 
H2NCH2CH2NH2),10 the phase shifts of 0.46 A for Pt-N, at 
EQ of 13 900 eV, were obtained. With the assumption that the 
phase shift for Pt-O can reasonably be assumed to be 0.46 A, 
the average Pt-N (or -O) distance is 2.03 A for both 4 and 
5. 

The most definitive result that can be deduced from the 
radial distribution functions shown in Figure 1 is the lack of 
distinct Pt-Pt bonding1' in the DNA complexes of both the cis-
and trans-DDV. This conclusion is further supported by a 
detailed comparison of Figure 1 with the Fourier transforms 
of the EXAFS spectra of the structurally characterized12 

[(Pt(en)(Guo)2]
2+, Guo = guanosine, which does not contain 

any Pt-Pt bond, and of a series of cw-diammine- or cis-di-
(alkylamine)platinum uridine blues which have been shown 
to contain Pt-Pt bonds of ~2.9 A.13 Specifically, the RD curves 
of 4 (Figures la and Ic; except for the shoulder at 2.01 A in the 
latter) and 5 (Figure lb) are quite similar to that of [Pt(en)-
(Guo)2]2+ (cf. Figure Id of ref 13) but grossly different from 
that of the platinum blues (cf Figures 1 a and 1 b of ref 13).'3 

This conclusion is reinforced by the observation that the am­
plitude of the Pt-X (X = C, N, O) peaks decreases with in­
creasing distances and that for similar distances the Pt-Pt 
peaks are two to three times higher than the Pt-X 
peaks.13'14 

The number of nearest neighboring atoms and the corre­
sponding Pt-N (or -O) distances can be obtained by Fourier 
filtering83 the largest peak in Figure 1 with a smooth window 
of 1.0-2.4 A (cutoff limits) and transforming it back into k 
space. The resulting EXAFS spectra can then be fitted (as 
shown in Figure 2)8b with a "single-distance" model based on 
the amplitude and phase functions (chemical transferabilities 
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Figure 1. Fourier transforms 03(r') (radial distribution curves) of the 
k3x(k) EXAFS spectra, corresponding to data recorded at ambient (a and 
b) and liquid nitrogen (c) temperatures, of complexes formed in the re­
action of m-DDP (a and c) and trans-DDP (b) with calf thymus DNA. 
The dashed lines indicate the noise levels. r'(A) is related to the interatomic 
distance /-(A) by a phase shift (see text). 

assumed9) of P t -N deduced from the structurally known 
[Pt(en)2]2+ complex.10 Four parameters are least-squares 
refined: the overall magnitude, the Debye-Waller factor a, the 
distance r, and the energy threshold £0-9e,f With this approach, 
the numbers of nearest neighbors were found to be 4.3 (5) and 
3.6 (3), and the corresponding interatomic distances 2.025 (9) 
and 2.033 (6) A, for 4 and 5, respectively.15 The corresponding 
values for 4 at liquid nitrogen temperature are 3.7 (5) and 
2.027 (9) A.15 These reasonable values of coordination num­
bers and bond lengths provide strong evidence that the plati­
num atoms in both 4 and 5 are coordinated to four nitrogen 
and/or oxygen atoms as normal single bonds. The Debye-
Waller factors15 of 0.056 (8) and 0.049 (7) A for 4 and 5, re­
spectively, at room temperature are comparable with those of 
0.050 (12) and 0.052 (10) A found in [Pt(en)2]2 + and 
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Figure 2. Nonlinear least-squares fits (dashed curves) of the Fourier-fil­
tered (smooth window of 1.0-2.4 A) coordination sphere k3x(k) EXAFS 
spectra (solid curves) for complexes formed in the reaction of m-DDP 
(a and c) and trans-DDP (b) with calf thymus DNA (cf. Figure 1 cap­
tion). 

[Pt(en)(Guo)2]2+, respectively, indicating that the spreads of 
the Pt-X (X = N or O) bond distances are probably on the 
order of 0.06-0.08 A (assuming a 2:2 distance model and <rvjb 
« 0.038 A). At liquid nitrogen temperature, the Debye-Waller 
factor15 of 4 decreases to 0.038 (14) A. Furthermore, the Li 
absorption edges of 4 and 5 occur at energies similar (within 
2 eV) to those of other platinum(II) complexes such as 
[Pt(en)2]2 + , [P t (NH 3 ) 4 ] 2 + , and [Pt(NHj)2Cl2], thereby 
suggesting that the platinum atoms adopt a Pt(II) square-
planar configuration. The present results rule out the possibility 
that three Pt -N(O) and one Pt-Cl bonds comprise the coor­
dination sphere in either 5 (as has been proposed4*5) or 4. 
Chloride ions are clearly lost upon DNA binding.16 The 
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EXAFS results also demonstrate that oxidative addition to 
form a six-coordinate Pt(IV)-DNA adduct with the retention 
of both ammines and chlorides does not occur. From the 
EXAFS spectra, no appreciable differences were detected at 
this stage in the platinum coordination spheres of the com­
plexes formed by cis- and trans-DDP with DNA. This result, 
however, should not be taken to indicate that subtle differences 
do not exist. 

In conclusion, this work provides, for the first time, strong 
structural evidence against the possibility of distinct metal-
metal bonding in the complexes of both cis- and trans-DDP 
with calf thymus DNA. The data are consistent with the 
presence of four Pt-N (or -O) bonds in a presumably 
square-planar Pt(II) coordination sphere. Further stereo­
chemical details from EXAFS study must await determination 
of interatomic distances other than those in the coordination 
shell using spectra of higher signal-to-noise ratio (in prog­
ress). 
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(8-Cyclodextrinylbisimidazole, 
a Model for Ribonuclease 

Sir: 

Tabushi has reported1 the preparation of 1, in which /3-
cyclodextrin (cycloheptaamylose) is capped as a disulfonate 
derivative. We had been interested2 in such selectively di-
functionalized cyclodextrins for the synthesis of bifunctional 
catalysts. As an example, we find that on heating with imid­
azole in DMF at 85-90 0C for 96 h 1 is converted to the bis-
imidazole derivative 2.3 Tabushi has recently described4 several 
other displacement reactions of 1. We now wish to report that 
2 has the ability to catalyze the hydrolysis of a cyclic phosphate 
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